应急管理部公布2019年全国十大自然灾害******
2019年我国自然灾害以洪涝、台风、干旱、地震、地质灾害为主,森林草原火灾和风雹、低温冷冻、雪灾等灾害也有不同程度发生。经应急管理部会同工业和信息化部、自然资源部等国家减灾委成员单位会商核定,全年各种自然灾害共造成1.3亿人次受灾,909人死亡失踪,12.6万间房屋倒塌,农作物受灾面积19256.9千公顷,直接经济损失3270.9亿元。
2019年十大自然灾害
1.1909号超强台风“利奇马”
8月10日1时45分,“利奇马”在浙江省温岭市沿海登陆,登陆时中心附近最大风力为16级(52米/秒)。此后于11日20时50分在山东省青岛市沿海二次登陆,中央气象台13日6时对其停止编号。
据统计,超强台风“利奇马”是1949年以来登陆我国大陆地区强度处第五位的超强台风,共造成浙江、山东、江苏、安徽、辽宁、上海、福建、河北、吉林9省(市)64市403个县(市、区)1402.4万人受灾,因灾死亡66人,失踪4人,紧急转移安置209.7万人;1.5万间房屋倒塌,13.3万间不同程度损坏;农作物受灾面积1137千公顷,其中绝收93.5千公顷;直接经济损失515.3亿元。
2.6月上中旬广西、广东、江西等6省(区)洪涝灾害
2019年6月6日至13日,江南、华南北部等地出现持续强降雨天气过程。其中,湖南中南部、江西、浙江南部、福建、广西北部、广东中东部等地累计降雨超过100毫米,广西桂林和柳州,江西吉安、赣州、抚州和上饶,浙江衢州,福建南平、三明和龙岩,广东广州、河源、韶关等地部分地区250~400毫米,其中广西桂林最大降雨量832毫米,江西吉安758毫米。此次强降雨导致广西、广东、江西、浙江、福建、湖南等地遭受洪涝、风雹、滑坡、泥石流等灾害,造成上述6省(区)45市(自治州)249县(市、区)577.8万人受灾,91人死亡,7人失踪,42.1万人紧急转移安置,18.2万人需紧急生活救助;1.9万间房屋倒塌,8.3万间不同程度损坏;农作物受灾面积419.4千公顷,其中绝收60.2千公顷;直接经济损失231.8亿元。
3.贵州水城“7·23”特大山体滑坡灾害
2019年7月23日21时20分许,贵州省六盘水市水城县鸡场镇坪地村岔沟组发生一起特大山体滑坡灾害,滑坡方量约200余万方,造成近1600人受灾,43人死亡,9人失踪,700余人紧急转移安置,600余人需紧急生活救助;100余间房屋倒塌,2300余间不同程度损坏;直接经济损失1.9亿元。
4.四川“8·20”强降雨特大山洪、泥石流灾害
2019年8月19日至22日,四川盆地西部累计降雨量50~200毫米,成都、雅安及阿坝州、乐山、绵阳等部分地区达250~400毫米,成都大邑县和邛崃市、雅安芦山县局地418~567毫米。此次降雨时间持续较长,雨量较为集中,导致部分地区暴发山洪、泥石流灾害。灾害造成阿坝、雅安、乐山等9市(自治州)35个县(市、区)44.6万人受灾,26人死亡,19人失踪,7.3万人紧急转移安置,4.7万人需紧急生活救助;1000余间房屋倒塌,1.5万间不同程度损坏;农作物受灾面积14.8千公顷,其中绝收2.2千公顷;灾区部分公路、水利、电力等基础设施受损严重,直接经济损失158.9亿元。
5.7月上中旬长江中下游洪水
2019年7月3日至17日,长江中下游地区连续遭受2轮强降雨袭击,其中,7月3日至10日,南方出现入汛以后最强降雨过程,江西萍乡(497.3毫米)、峡江(461.4毫米)、湖南耒阳(396毫米)、衡东(348.4毫米)4站连续降水量突破历史极值。长江干流九江至大通河段和鄱阳湖、洞庭湖以及多条支流发生超警戒水位洪水,其中湘江发生超过50年一遇的特大洪水。灾害造成安徽、江西、湖北、湖南4省31市(自治州)196县(市、区)1031.9万人次受灾,37人死亡,3人失踪,114.9万人次紧急转移安置;2.1万间房屋倒塌,2.2万间严重损坏,7.4万间一般损坏;农作物受灾面积776.9千公顷,其中绝收171千公顷;直接经济损失324.3亿元。
6.南方地区夏秋冬连旱
2019年5月份以来,受持续高温少雨天气影响,土壤失墒严重,江汉、江南部分地区发生夏秋冬连旱,尤其是7月下旬以来,湖北、江西、安徽平均降水量较历史同期偏少六成以上,湖南累计降雨较历史同期均值偏少5成以上。据统计,干旱灾害造成浙江、安徽、江西、河南、湖北、湖南6省67个市(自治州)387个县(市、区)3263.5万人受灾,677.6万人因旱需生活救助,其中295.3万人因旱饮水困难需救助;农作物受灾面积3310.1千公顷,其中绝收475.1千公顷;饮水困难大牲畜11.2万头(只);直接经济损失189.9亿元。
7.四川长宁6.0级地震
2019年6月17日22时55分,四川省宜宾市长宁县(北纬28.34度,东经104.9度)发生6.0级地震,震源深度16千米。此后又相继发生4次5级以上余震。地震灾害造成四川省宜宾、乐山2市16个县(市、区)35.9万人受灾,13人死亡,9.5万人紧急转移安置,3500余间房屋倒塌,22.3万间不同程度损坏,直接经济损失56.2亿元。
8.四川木里“3·30”森林火灾
2019年3月30日18时26分,四川省凉山州木里县发生森林火灾。3月31日下午,四川森林消防总队凉山州支队指战员和地方扑火队员共689人在海拔4000余米的原始森林展开扑救。扑火行动中,受瞬间风力风向突变影响,突发林间可燃气体爆燃,造成27名森林消防指战员和4名地方干部群众牺牲。
9.山西乡宁“3·15”滑坡灾害
2019年3月15日18时10分许,山西省临汾市乡宁县枣岭乡卫生院北侧发生山体滑坡,致卫生院一栋家属楼(6户)、信用社一栋家属楼(8户)和一座小型洗浴中心垮塌,造成100余人受灾,20人死亡,100余人紧急转移安置,近100间房屋倒塌,直接经济损失2100余万元。
10.青海玉树等地雪灾
2019年初,青海省玉树州连续出现12次明显降雪过程,降雪量、强降雪天数达到当地历史同期最多,降雪日数为历史最多年,造成持续性积雪,最大积雪深度达22厘米,造成大量牲畜死亡,玉树、果洛部分乡镇道路中断。雪灾造成玉树、果洛、海西3自治州13个县20.7万人受灾和需紧急生活救助,5.3万头(只)牲畜死亡,直接经济损失2.1亿元。(总台记者 崔世杰)
科学家成功合成铹的第14个同位素****** 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。 近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。 此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。 不断进行探索,再次合成铹同位素 铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。 质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。 103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。 截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。 目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。 通过熔合反应,形成新的原子核 铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。 “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。 在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。 “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。 超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。 拓展新的领域,推动超重核理论研究 由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。 此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。 研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。 “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |